Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 4681-4691, 2022.
Article in Chinese | WPRIM | ID: wpr-970340

ABSTRACT

Semiconductor nanoparticles generate photoelectrons and photo-induced holes under light excitation, and thus may influence the growth of microbial cells. The highly oxidative holes may severely damage the cells, while the photoelectrons may promote microbial metabolism. In this study, we evaluated the effect of exogenous cadmium sulfide (CdS) nanoparticles on bacterial growth using OD600 and colony forming unit (CFU) as indicators. The oxidase activities, the concentration of pyruvate and malondialdehyde, and the expression of relevant genes assessed by real-time fluorescent quantitative PCR were analyzed to investigate the effect of excited CdS on cellular metabolism. The results showed that the OD600 and pyruvate accumulation of E. coli increased by 32.4% and 34.6%, respectively, under light conditions. Moreover, the relative expression level of the division protein gene ftsZ was increased more than 50%, and the tricarboxylic acid cycle pathway gene icdA and gltA increased by 86% and 103%, respectively. The results indicated that photoelectrons could be used by microorganisms, resulting in promoted growth and metabolism. This study gives a deep insight into the interaction between nanoparticles and bacteria.


Subject(s)
Escherichia coli/metabolism , Nanoparticles , Cadmium Compounds/metabolism , Quantum Dots
SELECTION OF CITATIONS
SEARCH DETAIL